home *** CD-ROM | disk | FTP | other *** search
/ NeXT Education Software Sampler 1992 Fall / NeXT Education Software Sampler 1992 Fall.iso / Mathematics / Notebooks / CSOMinesCalculus / Chapter1 / ws4.tex < prev    next >
LaTeX Document  |  1992-06-22  |  4.2 KB

open in: MacOS 8.1     |     Win98     |     DOS

browse contents    |     view JSON data     |     view as text


This file was processed as: LaTeX Document (document/latex).

ConfidenceProgramDetectionMatch TypeSupport
100% dexvert LaTeX Document (document/latex) magic Supported
1% dexvert Corel 10 Texture (image/corel10Texture) ext Unsupported
1% dexvert Croteam texture file (image/croteamTextureFile) ext Unsupported
1% dexvert Text File (text/txt) fallback Supported
100% file LaTeX document text default
99% file LaTeX document, ASCII text, with very long lines (634) default
100% checkBytes Printable ASCII default
100% perlTextCheck Likely Text (Perl) default
100% siegfried fmt/281 LaTeX (Subdocument) default
100% detectItEasy Format: plain text[LF] default (weak)



hex view
+--------+-------------------------+-------------------------+--------+--------+
|00000000| 5c 64 6f 63 75 6d 65 6e | 74 73 74 79 6c 65 5b 31 |\documen|tstyle[1|
|00000010| 31 70 74 2c 66 6c 65 71 | 6e 2c 65 70 73 66 2c 63 |1pt,fleq|n,epsf,c|
|00000020| 61 6c 63 5d 7b 61 72 74 | 69 63 6c 65 7d 0a 5c 6d |alc]{art|icle}.\m|
|00000030| 61 72 6b 72 69 67 68 74 | 7b 43 68 61 70 74 65 72 |arkright|{Chapter|
|00000040| 20 31 3a 20 57 6f 72 6b | 73 68 65 65 74 20 34 7d | 1: Work|sheet 4}|
|00000050| 0a 5c 62 65 67 69 6e 7b | 64 6f 63 75 6d 65 6e 74 |.\begin{|document|
|00000060| 7d 0a 0a 5c 42 66 7b 5c | 53 74 61 72 5c 20 43 68 |}..\Bf{\|Star\ Ch|
|00000070| 61 70 74 65 72 20 31 3a | 20 57 6f 72 6b 73 68 65 |apter 1:| Workshe|
|00000080| 65 74 20 34 20 20 5c 68 | 66 69 6c 6c 20 4a 61 63 |et 4 \h|fill Jac|
|00000090| 6b 20 4b 2e 20 43 6f 68 | 65 6e 20 5c 68 66 69 6c |k K. Coh|en \hfil|
|000000a0| 6c 20 43 6f 6c 6f 72 61 | 64 6f 20 53 63 68 6f 6f |l Colora|do Schoo|
|000000b0| 6c 20 6f 66 20 4d 69 6e | 65 73 7d 0a 0a 5c 76 73 |l of Min|es}..\vs|
|000000c0| 70 61 63 65 7b 31 2e 35 | 65 78 7d 0a 5c 43 62 7b |pace{1.5|ex}.\Cb{|
|000000d0| 52 65 74 75 72 6e 20 6f | 66 20 74 68 65 20 41 73 |Return o|f the As|
|000000e0| 74 65 72 6f 69 64 20 50 | 72 6f 62 6c 65 6d 2c 20 |teroid P|roblem, |
|000000f0| 4c 69 6e 65 73 2c 20 4c | 69 6e 65 73 2c 20 4c 69 |Lines, L|ines, Li|
|00000100| 6e 65 73 7d 0a 5c 76 73 | 70 61 63 65 7b 31 2e 35 |nes}.\vs|pace{1.5|
|00000110| 65 78 7d 0a 0a 5c 6e 6f | 69 6e 64 65 6e 74 20 5c |ex}..\no|indent \|
|00000120| 42 66 7b 53 75 67 67 65 | 73 74 65 64 20 50 72 6f |Bf{Sugge|sted Pro|
|00000130| 62 6c 65 6d 73 7d 0a 53 | 65 63 74 69 6f 6e 20 31 |blems}.S|ection 1|
|00000140| 2e 32 3a 20 31 31 2c 20 | 31 35 2c 20 31 37 2c 20 |.2: 11, |15, 17, |
|00000150| 32 31 0a 0a 5c 62 65 67 | 69 6e 7b 65 6e 75 6d 65 |21..\beg|in{enume|
|00000160| 72 61 74 65 7d 0a 0a 5c | 69 74 65 6d 20 5c 53 74 |rate}..\|item \St|
|00000170| 61 72 5c 20 20 28 41 73 | 74 65 72 6f 69 64 20 70 |ar\ (As|teroid p|
|00000180| 72 6f 62 6c 65 6d 20 63 | 6f 6e 74 69 6e 75 65 64 |roblem c|ontinued|
|00000190| 29 20 52 65 63 61 6c 6c | 20 74 68 61 74 20 79 6f |) Recall| that yo|
|000001a0| 75 20 6c 61 6e 64 65 64 | 20 6f 6e 20 61 20 73 70 |u landed| on a sp|
|000001b0| 68 65 72 69 63 61 6c 20 | 61 73 74 65 72 6f 69 64 |herical |asteroid|
|000001c0| 2e 20 59 6f 75 72 20 70 | 61 72 74 6e 65 72 20 77 |. Your p|artner w|
|000001d0| 61 6c 6b 65 64 20 31 30 | 30 30 20 66 65 65 74 20 |alked 10|00 feet |
|000001e0| 61 77 61 79 20 61 6c 6f | 6e 67 20 74 68 65 20 73 |away alo|ng the s|
|000001f0| 6d 6f 6f 74 68 20 73 75 | 72 66 61 63 65 20 63 61 |mooth su|rface ca|
|00000200| 72 72 79 69 6e 67 20 61 | 20 31 30 20 66 65 65 74 |rrying a| 10 feet|
|00000210| 20 72 6f 64 2c 20 61 6e | 64 20 74 68 65 72 65 62 | rod, an|d thereb|
|00000220| 79 20 76 61 6e 69 73 68 | 65 64 20 6f 76 65 72 20 |y vanish|ed over |
|00000230| 74 68 65 20 68 6f 72 69 | 7a 6f 6e 2e 20 20 57 68 |the hori|zon. Wh|
|00000240| 65 6e 20 73 68 65 20 70 | 6c 61 63 65 64 20 6f 6e |en she p|laced on|
|00000250| 65 20 65 6e 64 20 6f 6e | 20 74 68 65 20 67 72 6f |e end on| the gro|
|00000260| 75 6e 64 20 61 6e 64 20 | 68 65 6c 64 20 20 74 68 |und and |held th|
|00000270| 65 20 72 6f 64 20 73 74 | 72 61 69 67 68 74 20 75 |e rod st|raight u|
|00000280| 70 20 61 6e 64 20 64 6f | 77 6e 2c 20 79 6f 75 20 |p and do|wn, you |
|00000290| 28 6c 79 69 6e 67 20 6f | 6e 20 79 6f 75 72 20 73 |(lying o|n your s|
|000002a0| 74 6f 6d 61 63 68 20 74 | 6f 20 72 65 73 74 20 66 |tomach t|o rest f|
|000002b0| 72 6f 6d 20 74 68 65 20 | 61 72 64 75 6f 75 73 20 |rom the |arduous |
|000002c0| 6a 6f 75 72 6e 65 79 20 | 66 72 6f 6d 20 45 61 72 |journey |from Ear|
|000002d0| 74 68 29 20 63 6f 75 6c | 64 20 6a 75 73 74 20 62 |th) coul|d just b|
|000002e0| 61 72 65 6c 79 20 73 65 | 65 20 74 68 65 20 74 69 |arely se|e the ti|
|000002f0| 70 20 6f 66 20 74 68 65 | 20 72 6f 64 2e 20 20 20 |p of the| rod. |
|00000300| 20 59 6f 75 20 6e 6f 77 | 20 6b 6e 6f 77 20 74 68 | You now| know th|
|00000310| 61 74 20 74 68 65 20 63 | 6f 72 72 65 63 74 20 65 |at the c|orrect e|
|00000320| 71 75 61 74 69 6f 6e 20 | 66 6f 72 20 24 72 24 20 |quation |for $r$ |
|00000330| 69 73 20 24 5c 63 6f 73 | 20 28 73 2f 72 29 20 3d |is $\cos| (s/r) =|
|00000340| 20 72 2f 28 72 20 2b 20 | 68 29 24 2c 20 6f 72 20 | r/(r + |h)$, or |
|00000350| 69 6e 20 6e 75 6d 65 72 | 69 63 61 6c 20 66 6f 72 |in numer|ical for|
|00000360| 6d 3a 20 20 24 5c 63 6f | 73 28 31 30 30 30 2f 72 |m: $\co|s(1000/r|
|00000370| 29 20 3d 20 72 2f 28 72 | 20 2b 20 32 30 29 24 2e |) = r/(r| + 20)$.|
|00000380| 20 20 55 73 69 6e 67 20 | 5c 54 74 7b 50 6c 6f 74 | Using |\Tt{Plot|
|00000390| 7d 20 61 6e 64 2f 6f 72 | 20 5c 54 74 7b 54 61 62 |} and/or| \Tt{Tab|
|000003a0| 6c 65 7d 2c 20 66 69 6e | 64 20 74 68 65 20 70 68 |le}, fin|d the ph|
|000003b0| 79 73 69 63 61 6c 6c 79 | 20 73 65 6e 73 69 62 6c |ysically| sensibl|
|000003c0| 65 20 73 6f 6c 75 74 69 | 6f 6e 20 74 6f 20 74 77 |e soluti|on to tw|
|000003d0| 6f 20 64 65 63 69 6d 61 | 6c 20 70 6c 61 63 65 73 |o decima|l places|
|000003e0| 2e 0a 0a 5c 6e 6f 69 6e | 64 65 6e 74 20 5c 42 66 |...\noin|dent \Bf|
|000003f0| 7b 43 6f 6d 6d 65 6e 74 | 7d 3a 20 20 48 6f 77 20 |{Comment|}: How |
|00000400| 6d 75 63 68 20 77 6f 75 | 6c 64 20 79 6f 75 20 63 |much wou|ld you c|
|00000410| 6f 6e 74 72 69 62 75 74 | 65 20 74 6f 20 74 68 65 |ontribut|e to the|
|00000420| 20 49 6e 64 69 67 65 6e | 74 20 4d 61 74 68 20 50 | Indigen|t Math P|
|00000430| 72 6f 66 65 73 73 6f 72 | 27 73 20 53 75 70 70 6f |rofessor|'s Suppo|
|00000440| 72 74 20 46 75 6e 64 20 | 66 6f 72 20 61 6e 20 65 |rt Fund |for an e|
|00000450| 61 73 69 6c 79 20 64 65 | 72 69 76 65 64 20 65 73 |asily de|rived es|
|00000460| 74 69 6d 61 74 65 20 6f | 66 20 74 68 65 20 73 6f |timate o|f the so|
|00000470| 6c 75 74 69 6f 6e 20 74 | 6f 20 77 69 74 68 69 6e |lution t|o within|
|00000480| 20 31 20 66 6f 6f 74 3f | 20 20 41 63 74 75 61 6c | 1 foot?| Actual|
|00000490| 6c 79 2c 20 74 68 69 73 | 20 66 65 65 20 69 73 20 |ly, this| fee is |
|000004a0| 63 6f 76 65 72 65 64 20 | 69 6e 20 79 6f 75 72 20 |covered |in your |
|000004b0| 74 75 69 74 69 6f 6e 20 | 66 6f 72 20 74 68 69 73 |tuition |for this|
|000004c0| 20 63 6f 75 72 73 65 2d | 2d 2d 73 74 61 79 20 74 | course-|--stay t|
|000004d0| 75 6e 65 64 2e 20 20 57 | 69 74 68 6f 75 74 20 71 |uned. W|ithout q|
|000004e0| 75 65 73 74 69 6f 6e 69 | 6e 67 20 74 68 61 74 20 |uestioni|ng that |
|000004f0| 5c 54 74 7b 50 6c 6f 74 | 7d 20 61 6e 64 20 5c 54 |\Tt{Plot|} and \T|
|00000500| 74 7b 54 61 62 6c 65 7d | 20 61 72 65 20 77 6f 6e |t{Table}| are won|
|00000510| 64 65 72 66 75 6c 20 74 | 6f 6f 6c 73 2c 20 79 6f |derful t|ools, yo|
|00000520| 75 72 20 65 78 70 65 72 | 69 65 6e 63 65 20 77 69 |ur exper|ience wi|
|00000530| 74 68 20 74 68 65 20 63 | 75 72 72 65 6e 74 20 70 |th the c|urrent p|
|00000540| 72 6f 62 6c 65 6d 20 6d | 61 79 20 63 61 75 73 65 |roblem m|ay cause|
|00000550| 20 79 6f 75 20 74 6f 20 | 77 6f 6e 64 65 72 20 69 | you to |wonder i|
|00000560| 66 20 74 68 65 72 65 20 | 61 72 65 6e 27 74 20 73 |f there |aren't s|
|00000570| 6f 6d 65 20 62 65 74 74 | 65 72 20 6d 65 74 68 6f |ome bett|er metho|
|00000580| 64 73 20 6f 66 20 73 6f | 6c 76 69 6e 67 20 65 71 |ds of so|lving eq|
|00000590| 75 61 74 69 6f 6e 73 2e | 20 20 49 66 20 73 6f 2c |uations.| If so,|
|000005a0| 20 79 6f 75 20 77 69 6c | 6c 20 62 65 20 67 6c 61 | you wil|l be gla|
|000005b0| 64 20 74 6f 20 68 65 61 | 72 20 74 68 61 74 20 79 |d to hea|r that y|
|000005c0| 6f 75 20 77 69 6c 6c 2c | 20 69 6e 64 65 65 64 2c |ou will,| indeed,|
|000005d0| 20 62 65 20 6c 65 61 72 | 6e 69 6e 67 20 61 62 6f | be lear|ning abo|
|000005e0| 75 74 20 6d 6f 72 65 20 | 61 64 76 61 6e 63 65 64 |ut more |advanced|
|000005f0| 20 73 6f 6c 75 74 69 6f | 6e 20 6d 65 74 68 6f 64 | solutio|n method|
|00000600| 73 20 74 68 69 73 20 73 | 65 6d 65 73 74 65 72 2e |s this s|emester.|
|00000610| 0a 0a 0a 5c 69 74 65 6d | 20 28 31 2e 32 2e 32 34 |...\item| (1.2.24|
|00000620| 29 20 46 69 6e 64 20 74 | 68 65 20 70 65 72 70 65 |) Find t|he perpe|
|00000630| 6e 64 69 63 75 6c 61 72 | 20 64 69 73 74 61 6e 63 |ndicular| distanc|
|00000640| 65 20 66 72 6f 6d 20 74 | 68 65 20 70 6f 69 6e 74 |e from t|he point|
|00000650| 20 28 32 2c 20 31 29 20 | 74 6f 20 74 68 65 20 6c | (2, 1) |to the l|
|00000660| 69 6e 65 20 77 69 74 68 | 20 65 71 75 61 74 69 6f |ine with| equatio|
|00000670| 6e 20 24 79 20 3d 20 78 | 20 2b 20 31 24 2e 0a 0a |n $y = x| + 1$...|
|00000680| 5c 69 74 65 6d 20 41 20 | 60 60 77 65 6c 6c 2d 6b |\item A |``well-k|
|00000690| 6e 6f 77 6e 27 27 20 66 | 6f 72 6d 75 6c 61 20 66 |nown'' f|ormula f|
|000006a0| 72 6f 6d 20 63 6f 6d 70 | 75 74 61 74 69 6f 6e 61 |rom comp|utationa|
|000006b0| 6c 20 67 65 6f 6d 65 74 | 72 79 20 67 69 76 65 73 |l geomet|ry gives|
|000006c0| 20 74 68 65 20 70 65 72 | 70 65 6e 64 69 63 75 6c | the per|pendicul|
|000006d0| 61 72 20 64 69 73 74 61 | 6e 63 65 20 24 64 24 20 |ar dista|nce $d$ |
|000006e0| 66 72 6f 6d 20 61 6e 20 | 61 72 62 69 74 72 61 72 |from an |arbitrar|
|000006f0| 79 20 70 6f 69 6e 74 20 | 24 50 30 3a 28 78 5f 30 |y point |$P0:(x_0|
|00000700| 2c 20 79 5f 30 29 24 20 | 74 6f 20 61 6e 20 61 72 |, y_0)$ |to an ar|
|00000710| 62 69 74 72 61 72 79 20 | 6c 69 6e 65 20 24 4c 3a |bitrary |line $L:|
|00000720| 20 41 78 20 2b 20 42 79 | 20 3d 20 43 24 20 61 73 | Ax + By| = C$ as|
|00000730| 20 5c 5b 64 20 3d 20 5c | 66 72 61 63 7b 7c 41 78 | \[d = \|frac{|Ax|
|00000740| 5f 30 20 2b 20 42 79 5f | 30 20 2d 20 43 7c 7d 7b |_0 + By_|0 - C|}{|
|00000750| 5c 73 71 72 74 7b 41 5e | 32 20 2b 20 42 5e 32 7d |\sqrt{A^|2 + B^2}|
|00000760| 7d 2e 20 5c 5d 20 20 55 | 73 65 20 74 68 69 73 20 |}. \] U|se this |
|00000770| 66 6f 72 6d 75 6c 61 20 | 74 6f 20 63 68 65 63 6b |formula |to check|
|00000780| 20 79 6f 75 72 20 61 6e | 73 77 65 72 20 66 6f 72 | your an|swer for|
|00000790| 20 74 68 65 20 70 72 65 | 76 69 6f 75 73 20 70 72 | the pre|vious pr|
|000007a0| 6f 62 6c 65 6d 2e 0a 0a | 5c 69 74 65 6d 20 5c 42 |oblem...|\item \B|
|000007b0| 66 7b 48 6f 6e 6f 72 20 | 50 72 6f 62 6c 65 6d 7d |f{Honor |Problem}|
|000007c0| 3a 20 20 59 6f 75 20 6b | 6e 6f 77 20 65 76 65 72 |: You k|now ever|
|000007d0| 79 74 68 69 6e 67 20 6e | 65 65 64 65 64 20 74 6f |ything n|eeded to|
|000007e0| 20 64 65 72 69 76 65 20 | 74 68 65 20 66 6f 72 6d | derive |the form|
|000007f0| 75 6c 61 20 63 69 74 65 | 64 20 69 6e 20 74 68 65 |ula cite|d in the|
|00000800| 20 70 72 65 76 69 6f 75 | 73 20 70 72 6f 62 6c 65 | previou|s proble|
|00000810| 6d 2e 20 20 48 6f 77 65 | 76 65 72 2c 20 69 74 27 |m. Howe|ver, it'|
|00000820| 73 20 61 20 6e 61 73 74 | 79 20 63 6f 6d 70 75 74 |s a nast|y comput|
|00000830| 61 74 69 6f 6e 20 62 79 | 20 68 61 6e 64 2e 20 20 |ation by| hand. |
|00000840| 53 6f 6c 75 74 69 6f 6e | 73 20 61 63 63 65 70 74 |Solution|s accept|
|00000850| 65 64 20 66 6f 72 20 74 | 68 65 20 6e 65 78 74 20 |ed for t|he next |
|00000860| 74 77 6f 20 77 65 65 6b | 73 2d 2d 2d 61 20 70 72 |two week|s---a pr|
|00000870| 69 7a 65 20 74 6f 20 74 | 68 65 20 6f 6e 65 20 77 |ize to t|he one w|
|00000880| 69 74 68 20 74 68 65 20 | 6e 69 63 65 73 74 20 70 |ith the |nicest p|
|00000890| 72 6f 6f 66 21 0a 0a 5c | 69 74 65 6d 20 28 31 2e |roof!..\|item (1.|
|000008a0| 32 2e 32 35 29 20 46 69 | 6e 64 20 74 68 65 20 70 |2.25) Fi|nd the p|
|000008b0| 65 72 70 65 6e 64 69 63 | 75 6c 61 72 20 64 69 73 |erpendic|ular dis|
|000008c0| 74 61 6e 63 65 20 62 65 | 74 77 65 65 6e 20 74 68 |tance be|tween th|
|000008d0| 65 20 70 61 72 61 6c 6c | 65 6c 20 6c 69 6e 65 73 |e parall|el lines|
|000008e0| 20 24 79 20 3d 20 35 78 | 20 2b 20 31 24 20 61 6e | $y = 5x| + 1$ an|
|000008f0| 64 20 24 79 20 3d 20 35 | 78 20 2b 20 39 24 2e 0a |d $y = 5|x + 9$..|
|00000900| 0a 5c 69 74 65 6d 20 41 | 6e 6f 74 68 65 72 20 60 |.\item A|nother `|
|00000910| 60 77 65 6c 6c 2d 6b 6e | 6f 77 6e 27 27 20 66 6f |`well-kn|own'' fo|
|00000920| 72 6d 75 6c 61 20 66 72 | 6f 6d 20 63 6f 6d 70 75 |rmula fr|om compu|
|00000930| 74 61 74 69 6f 6e 61 6c | 20 67 65 6f 6d 65 74 72 |tational| geometr|
|00000940| 79 20 67 69 76 65 73 20 | 74 68 65 20 70 65 72 70 |y gives |the perp|
|00000950| 65 6e 64 69 63 75 6c 61 | 72 20 64 69 73 74 61 6e |endicula|r distan|
|00000960| 63 65 20 62 65 74 77 65 | 65 6e 20 74 68 65 20 70 |ce betwe|en the p|
|00000970| 61 72 61 6c 6c 65 6c 20 | 6c 69 6e 65 73 20 24 4c |arallel |lines $L|
|00000980| 5f 31 3a 20 41 78 20 2b | 20 42 79 20 3d 20 43 5f |_1: Ax +| By = C_|
|00000990| 31 24 20 61 6e 64 20 24 | 4c 5f 32 3a 20 41 78 20 |1$ and $|L_2: Ax |
|000009a0| 2b 20 42 79 20 3d 20 43 | 5f 32 24 20 61 73 20 5c |+ By = C|_2$ as \|
|000009b0| 5b 64 20 3d 20 5c 66 72 | 61 63 7b 7c 43 5f 32 20 |[d = \fr|ac{|C_2 |
|000009c0| 2d 20 43 5f 31 7c 7d 7b | 5c 73 71 72 74 7b 41 5e |- C_1|}{|\sqrt{A^|
|000009d0| 32 20 2b 20 42 5e 32 7d | 7d 2e 20 5c 5d 20 0a 20 |2 + B^2}|}. \] . |
|000009e0| 20 20 20 20 20 20 20 5c | 62 65 67 69 6e 7b 65 6e | \|begin{en|
|000009f0| 75 6d 65 72 61 74 65 7d | 0a 20 20 20 20 20 20 20 |umerate}|. |
|00000a00| 20 5c 69 74 65 6d 20 55 | 73 65 20 74 68 69 73 20 | \item U|se this |
|00000a10| 66 6f 72 6d 75 6c 61 20 | 74 6f 20 63 68 65 63 6b |formula |to check|
|00000a20| 20 79 6f 75 72 20 61 6e | 73 77 65 72 20 66 6f 72 | your an|swer for|
|00000a30| 20 74 68 65 20 70 72 65 | 76 69 6f 75 73 20 70 72 | the pre|vious pr|
|00000a40| 6f 62 6c 65 6d 2e 0a 20 | 20 20 20 20 20 20 20 5c |oblem.. | \|
|00000a50| 69 74 65 6d 20 45 78 70 | 6c 61 69 6e 20 77 68 79 |item Exp|lain why|
|00000a60| 20 74 68 65 20 66 6f 72 | 6d 75 6c 61 73 20 67 69 | the for|mulas gi|
|00000a70| 76 65 6e 20 66 6f 72 20 | 24 4c 5f 31 24 20 61 6e |ven for |$L_1$ an|
|00000a80| 64 20 24 4c 5f 32 24 20 | 61 63 63 75 72 61 74 65 |d $L_2$ |accurate|
|00000a90| 6c 79 20 63 68 61 72 61 | 63 74 65 72 69 7a 65 20 |ly chara|cterize |
|00000aa0| 61 6e 20 5c 45 6d 7b 61 | 72 62 69 74 72 61 72 79 |an \Em{a|rbitrary|
|00000ab0| 7d 20 70 61 69 72 20 6f | 66 20 70 61 72 61 6c 6c |} pair o|f parall|
|00000ac0| 65 6c 20 6c 69 6e 65 73 | 20 28 65 2e 67 2e 2c 20 |el lines| (e.g., |
|00000ad0| 77 68 79 20 6e 6f 74 20 | 77 72 69 74 65 20 74 68 |why not |write th|
|00000ae0| 65 6d 20 61 73 20 24 79 | 20 3d 20 6d 78 20 2b 62 |em as $y| = mx +b|
|00000af0| 5f 31 2c 20 79 20 3d 20 | 6d 78 20 2b 62 5f 32 24 |_1, y = |mx +b_2$|
|00000b00| 3f 29 2e 0a 20 20 20 20 | 20 20 20 20 5c 65 6e 64 |?).. | \end|
|00000b10| 7b 65 6e 75 6d 65 72 61 | 74 65 7d 0a 0a 5c 69 74 |{enumera|te}..\it|
|00000b20| 65 6d 20 49 6e 20 61 6e | 61 6c 6f 67 79 20 77 69 |em In an|alogy wi|
|00000b30| 74 68 20 74 68 65 20 75 | 73 61 67 65 20 69 6e 20 |th the u|sage in |
|00000b40| 74 68 65 20 67 65 6f 6d | 65 74 72 79 20 6f 66 20 |the geom|etry of |
|00000b50| 61 20 63 69 72 63 6c 65 | 2c 20 61 20 5c 45 6d 7b |a circle|, a \Em{|
|00000b60| 73 65 63 61 6e 74 20 6c | 69 6e 65 7d 20 74 6f 20 |secant l|ine} to |
|00000b70| 61 6e 20 61 72 62 69 74 | 72 61 72 79 20 63 75 72 |an arbit|rary cur|
|00000b80| 76 65 20 20 69 73 20 64 | 65 66 69 6e 65 64 20 61 |ve is d|efined a|
|00000b90| 73 20 61 20 6c 69 6e 65 | 20 74 68 61 74 20 69 6e |s a line| that in|
|00000ba0| 74 65 72 73 65 63 74 73 | 20 74 68 65 20 63 75 72 |tersects| the cur|
|00000bb0| 76 65 20 69 6e 20 74 77 | 6f 20 28 6f 72 20 6d 6f |ve in tw|o (or mo|
|00000bc0| 72 65 29 20 70 6f 69 6e | 74 73 2e 20 43 6f 6e 73 |re) poin|ts. Cons|
|00000bd0| 69 64 65 72 20 74 68 65 | 20 63 75 72 76 65 20 24 |ider the| curve $|
|00000be0| 79 20 3d 20 78 5e 32 24 | 20 61 6e 64 20 74 77 6f |y = x^2$| and two|
|00000bf0| 20 70 6f 69 6e 74 73 20 | 6f 6e 20 69 74 2c 20 73 | points |on it, s|
|00000c00| 61 79 20 24 50 5f 31 28 | 78 5f 31 2c 20 79 5f 31 |ay $P_1(|x_1, y_1|
|00000c10| 29 24 20 61 6e 64 20 24 | 50 5f 32 28 78 5f 32 2c |)$ and $|P_2(x_2,|
|00000c20| 20 79 5f 32 29 24 2e 0a | 20 20 20 20 20 20 20 20 | y_2)$..| |
|00000c30| 5c 62 65 67 69 6e 7b 65 | 6e 75 6d 65 72 61 74 65 |\begin{e|numerate|
|00000c40| 7d 0a 20 20 20 20 20 20 | 20 20 5c 69 74 65 6d 20 |}. | \item |
|00000c50| 57 68 65 6e 20 24 78 5f | 31 20 3d 20 31 24 20 61 |When $x_|1 = 1$ a|
|00000c60| 6e 64 20 24 78 5f 32 20 | 3d 20 32 24 2c 20 66 69 |nd $x_2 |= 2$, fi|
|00000c70| 6e 64 20 74 68 65 20 73 | 65 63 61 6e 74 20 6c 69 |nd the s|ecant li|
|00000c80| 6e 65 20 74 68 61 74 20 | 70 61 73 73 65 73 20 74 |ne that |passes t|
|00000c90| 68 72 6f 75 67 68 20 24 | 50 5f 31 24 20 61 6e 64 |hrough $|P_1$ and|
|00000ca0| 20 24 50 5f 32 24 2e 0a | 20 20 20 20 20 20 20 20 | $P_2$..| |
|00000cb0| 0a 20 20 20 20 20 20 20 | 20 5c 69 74 65 6d 20 52 |. | \item R|
|00000cc0| 65 70 65 61 74 20 66 6f | 72 20 24 78 5f 31 20 3d |epeat fo|r $x_1 =|
|00000cd0| 20 31 24 20 61 6e 64 20 | 24 78 5f 32 20 3d 20 31 | 1$ and |$x_2 = 1|
|00000ce0| 2e 31 24 2e 0a 20 20 20 | 20 20 20 20 20 0a 20 20 |.1$.. | . |
|00000cf0| 20 20 20 20 20 20 5c 69 | 74 65 6d 20 52 65 70 65 | \i|tem Repe|
|00000d00| 61 74 20 66 6f 72 20 24 | 78 5f 31 20 3d 20 31 24 |at for $|x_1 = 1$|
|00000d10| 20 61 6e 64 20 24 78 5f | 32 20 3d 20 31 2e 30 31 | and $x_|2 = 1.01|
|00000d20| 24 2e 0a 20 20 20 20 20 | 20 20 20 0a 20 20 20 20 |$.. | . |
|00000d30| 20 20 20 20 5c 69 74 65 | 6d 20 4d 61 6b 65 20 61 | \ite|m Make a|
|00000d40| 6e 20 69 6e 74 75 69 74 | 69 76 65 20 65 73 74 69 |n intuit|ive esti|
|00000d50| 6d 61 74 65 20 66 6f 72 | 20 74 68 65 20 73 6c 6f |mate for| the slo|
|00000d60| 70 65 20 6f 66 20 74 68 | 65 20 5c 45 6d 7b 74 61 |pe of th|e \Em{ta|
|00000d70| 6e 67 65 6e 74 20 6c 69 | 6e 65 7d 20 74 6f 20 24 |ngent li|ne} to $|
|00000d80| 79 20 3d 20 78 5e 32 24 | 20 61 74 20 24 78 20 3d |y = x^2$| at $x =|
|00000d90| 20 31 24 2e 20 20 55 73 | 65 20 79 6f 75 72 20 65 | 1$. Us|e your e|
|00000da0| 73 74 69 6d 61 74 65 20 | 74 6f 20 77 72 69 74 65 |stimate |to write|
|00000db0| 20 61 20 66 6f 72 6d 75 | 6c 61 20 66 6f 72 20 74 | a formu|la for t|
|00000dc0| 68 65 20 74 61 6e 67 65 | 6e 74 20 6c 69 6e 65 20 |he tange|nt line |
|00000dd0| 61 74 20 24 78 20 3d 20 | 31 24 2e 0a 20 20 20 20 |at $x = |1$.. |
|00000de0| 20 20 20 20 0a 20 20 20 | 20 20 20 20 20 5c 69 74 | . | \it|
|00000df0| 65 6d 20 47 72 61 70 68 | 20 24 79 20 3d 20 78 5e |em Graph| $y = x^|
|00000e00| 32 24 20 69 6e 20 61 20 | 73 6d 61 6c 6c 20 72 65 |2$ in a |small re|
|00000e10| 67 69 6f 6e 20 6e 65 61 | 72 20 24 78 20 3d 20 31 |gion nea|r $x = 1|
|00000e20| 24 20 28 69 2e 65 2e 2c | 20 60 60 7a 6f 6f 6d 20 |$ (i.e.,| ``zoom |
|00000e30| 69 6e 27 27 29 20 61 6e | 64 20 76 65 72 69 66 79 |in'') an|d verify|
|00000e40| 20 79 6f 75 72 20 74 61 | 6e 67 65 6e 74 20 73 6c | your ta|ngent sl|
|00000e50| 6f 70 65 20 65 73 74 69 | 6d 61 74 65 20 28 6c 6f |ope esti|mate (lo|
|00000e60| 6f 6b 20 6f 75 74 20 66 | 6f 72 20 70 6f 73 73 69 |ok out f|or possi|
|00000e70| 62 6c 79 20 64 69 66 66 | 65 72 65 6e 74 20 73 63 |bly diff|erent sc|
|00000e80| 61 6c 65 73 20 6f 6e 20 | 74 68 65 20 74 77 6f 20 |ales on |the two |
|00000e90| 61 78 65 73 29 2e 0a 20 | 20 20 20 20 20 20 20 0a |axes).. | .|
|00000ea0| 20 20 20 20 20 20 20 20 | 5c 69 74 65 6d 20 4e 6f | |\item No|
|00000eb0| 74 69 63 65 20 74 68 61 | 74 20 74 68 65 20 70 68 |tice tha|t the ph|
|00000ec0| 72 61 73 65 20 5c 45 6d | 7b 74 61 6e 67 65 6e 74 |rase \Em|{tangent|
|00000ed0| 20 6c 69 6e 65 7d 20 68 | 61 73 6e 27 74 20 62 65 | line} h|asn't be|
|00000ee0| 65 6e 20 67 69 76 65 6e | 20 61 20 64 65 66 69 6e |en given| a defin|
|00000ef0| 69 74 69 6f 6e 20 69 6e | 20 70 61 72 74 20 28 64 |ition in| part (d|
|00000f00| 29 20 61 62 6f 76 65 2e | 20 20 57 6f 75 6c 64 20 |) above.| Would |
|00000f10| 79 6f 75 20 63 61 72 65 | 20 74 6f 20 66 69 6c 6c |you care| to fill|
|00000f20| 20 74 68 61 74 20 67 61 | 70 3f 20 20 42 65 20 73 | that ga|p? Be s|
|00000f30| 75 72 65 20 74 6f 20 74 | 68 69 6e 6b 20 61 62 6f |ure to t|hink abo|
|00000f40| 75 74 20 73 69 74 75 61 | 74 69 6f 6e 73 20 6c 69 |ut situa|tions li|
|00000f50| 6b 65 20 74 68 61 74 20 | 73 68 6f 77 6e 20 69 6e |ke that |shown in|
|00000f60| 20 46 69 67 75 72 65 20 | 31 2d 2d 2d 77 65 20 5c | Figure |1---we \|
|00000f70| 45 6d 7b 64 6f 7d 20 77 | 61 6e 74 20 74 6f 20 64 |Em{do} w|ant to d|
|00000f80| 65 66 69 6e 65 20 74 68 | 65 20 73 74 72 61 69 67 |efine th|e straig|
|00000f90| 68 74 20 6c 69 6e 65 20 | 61 73 20 62 65 69 6e 67 |ht line |as being|
|00000fa0| 20 61 20 74 61 6e 67 65 | 6e 74 20 6c 69 6e 65 20 | a tange|nt line |
|00000fb0| 28 61 74 20 24 78 20 5c | 61 70 70 72 6f 78 20 30 |(at $x \|approx 0|
|00000fc0| 2e 32 24 29 2e 20 20 49 | 73 20 74 68 69 73 20 6c |.2$). I|s this l|
|00000fd0| 69 6e 65 20 61 6c 73 6f | 20 61 20 73 65 63 61 6e |ine also| a secan|
|00000fe0| 74 20 6c 69 6e 65 3f 0a | 20 20 20 20 20 20 20 20 |t line?.| |
|00000ff0| 5c 65 6e 64 7b 65 6e 75 | 6d 65 72 61 74 65 7d 20 |\end{enu|merate} |
|00001000| 0a 20 20 20 20 20 20 20 | 20 0a 5c 62 65 67 69 6e |. | .\begin|
|00001010| 7b 66 69 67 75 72 65 7d | 5b 68 74 62 5d 0a 5c 65 |{figure}|[htb].\e|
|00001020| 70 73 66 79 73 69 7a 65 | 20 31 30 30 70 74 0a 5c |psfysize| 100pt.\|
|00001030| 63 65 6e 74 65 72 6c 69 | 6e 65 7b 5c 65 70 73 66 |centerli|ne{\epsf|
|00001040| 66 69 6c 65 7b 77 73 34 | 70 36 2e 65 70 73 7d 7d |file{ws4|p6.eps}}|
|00001050| 0a 5c 63 61 70 74 69 6f | 6e 7b 43 75 72 76 65 20 |.\captio|n{Curve |
|00001060| 61 6e 64 20 61 20 74 61 | 6e 67 65 6e 74 20 6c 69 |and a ta|ngent li|
|00001070| 6e 65 7d 20 0a 5c 65 6e | 64 7b 66 69 67 75 72 65 |ne} .\en|d{figure|
|00001080| 7d 0a 0a 0a 5c 65 6e 64 | 7b 65 6e 75 6d 65 72 61 |}...\end|{enumera|
|00001090| 74 65 7d 0a 5c 65 6e 64 | 7b 64 6f 63 75 6d 65 6e |te}.\end|{documen|
|000010a0| 74 7d 0a | |t}. | |
+--------+-------------------------+-------------------------+--------+--------+